

A Primer on Deep Learning based Medical Image Analysis

Tianyu Han

Physics of Molecular Imaging Systems (PMI) Experimental Molecular Imaging (ExMI) RWTH Aachen University

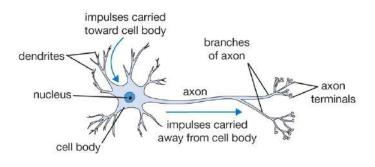
Uniklinik RWTH Aachen

Deep learning part of this lecture

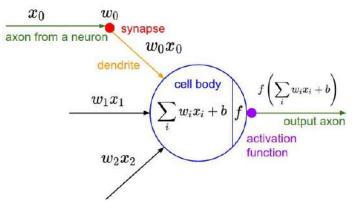
- Deep learning basics
 - Supervised learning
 - Backpropagation to train multilayer architectures
- Image processing
 - Convolutional neural networks
- Medical image understanding with deep networks
 - Disease classification
 - Tumour detection and tissue segmentation

Foundation: neural networks

a biological neuron



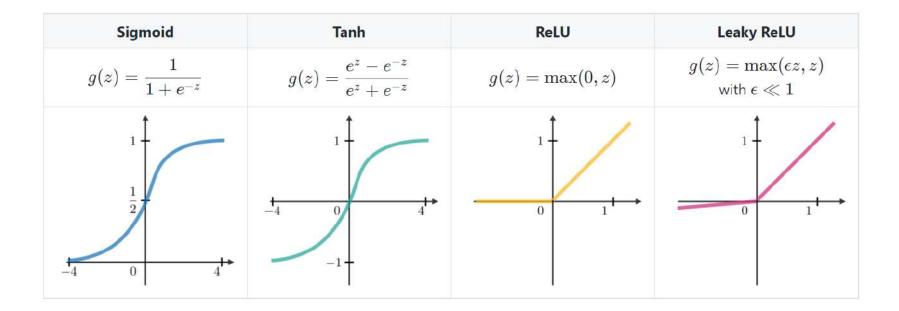
mathematical model



- Synaptic strengths (the weights w_i) are learnable
- the dendrites carry the signal to the cell body where they all get summed
 - If the final sum ≥ certain threshold → the neuron can fire!
- we model the firing rate of the neuron with an activation function *f*

```
class Neuron(object):
    # ...
def forward(self, inputs):
    """ assume inputs and weights are 1-D numpy arrays and bias is a number """
    cell_body_sum = np.sum(inputs * self.weights) + self.bias
    firing_rate = 1.0 / (1.0 + math.exp(-cell_body_sum)) # sigmoid activation function
    return firing_rate
```

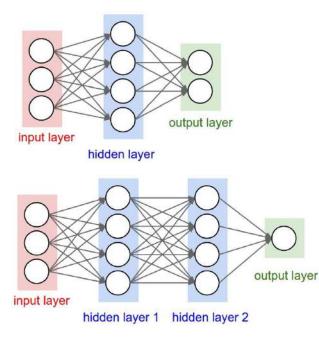
Non-linear activation functions



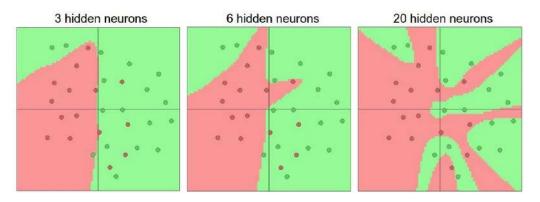
Now, we prefer ReLU activation over Sigmoid and Tanh:

- Sigmoid and Tanh saturate and kill gradients.
- Sigmoid outputs are not zero-centered.
 - Always, g'(z) = g(z)(1 g(z)) > 0

Network architectures (MLP)



Representational power



forward-pass of a 3-layer neural network:

f = lambda x: 1.0/(1.0 + np.exp(-x)) # activation function (use sigmoid)
x = np.random.randn(3, 1) # random input vector of three numbers (3x1)
h1 = f(np.dot(W1, x) + b1) # calculate first hidden layer activations (4x1)
h2 = f(np.dot(W2, h1) + b2) # calculate second hidden layer activations (4x1)
out = np.dot(W3, h2) + b3 # output neuron (1x1)

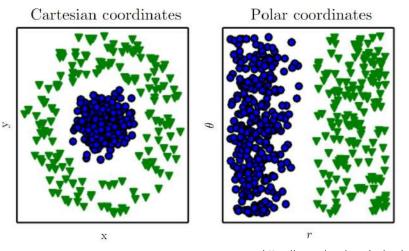
The forward pass of a fully-connected layer corresponds to one matrix multiplication followed by a bias offset and an activation function.

MLP-Mixer: An all-MLP Architecture for Vision

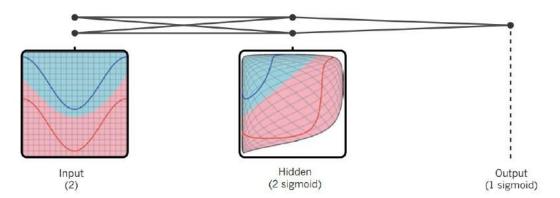
Ilya Tolstikhin*, Neil Houlsby*, Alexander Kolesnikov*, Lucas Beyer*, Xiaohua Zhai, Thomas Unterthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, Mario Lucic, Alexey Dosovitskiy *equal contribution Google Research, Brain Team {tolstikhin, neilhoulsby, akolesnikov, lbeyer, xzhai, unterthiner, jessicayung[†], andstein, keysers, usz, lucic, adosovitskiy}@google.com [†]work done during Google AI Residency

https://arxiv.org/pdf/2105.01601.pdf

What is the purpose of the hidden layers?



https://www.deeplearningbook.org/



https://www.nature.com/articles/nature14539.pdf

Training a neural network

Epoch:

 In the context of training a model, epoch is a term used to refer to one iteration where the model sees the whole training set to update its weights.

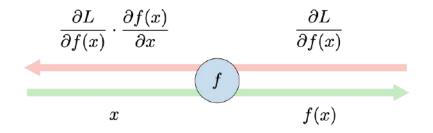
Mini-batch gradient descent:

- During the training phase, updating weights is usually not based on the whole training set at once due to computation complexities or one data point due to noise issues.
- Instead, the update step is done on mini-batches, where the number of data points in a batch is a hyperparameter that we can tune.

Loss function:

 In order to quantify how a given model performs, the loss function L is usually used to evaluate to what extent the actual outputs y are correctly predicted by the model outputs z.

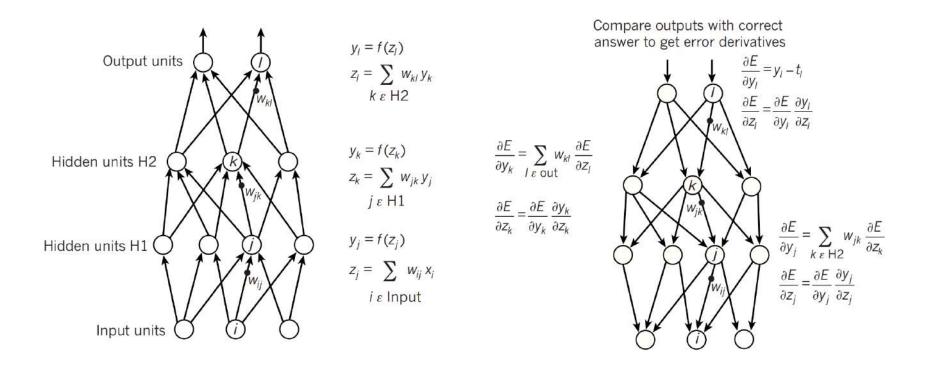
Finding optimal weights: backpropagation



Updating weights - In a neural network, weights are updated as follows:

- Step 1: Take a batch of training data and perform forward propagation to compute the loss.
- Step 2: Backpropagate the loss to get the gradient of the loss with respect to each weight.
- Step 3: Use the gradients to update the weights of the network.

Forward pass and backward pass



Parameter tuning and transfer learning

Training size	Illustration	Explanation
Small		Freezes all layers, trains weights on softmax
Medium		Freezes most layers, trains weights on last layers and softmax
Large		Trains weights on layers and softmax by initializing weights on pre-trained ones

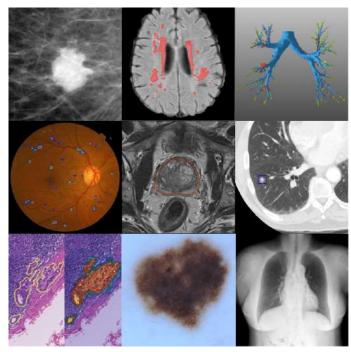
https://image-net.org/

https://cocodataset.org/#home

https://research.google.com/youtube8m/

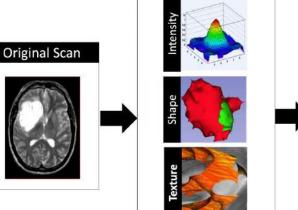
Processing medical imaging data

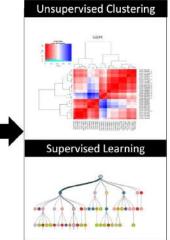
RWTHAACHEN UNIVERSITY



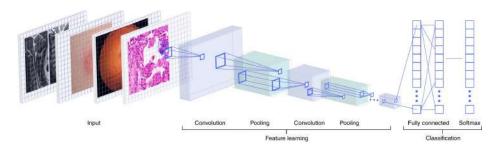
https://www.sciencedirect.com/science/article/abs/pii/S 1361841517301135?via%3Dihub

Radiomic pipeline





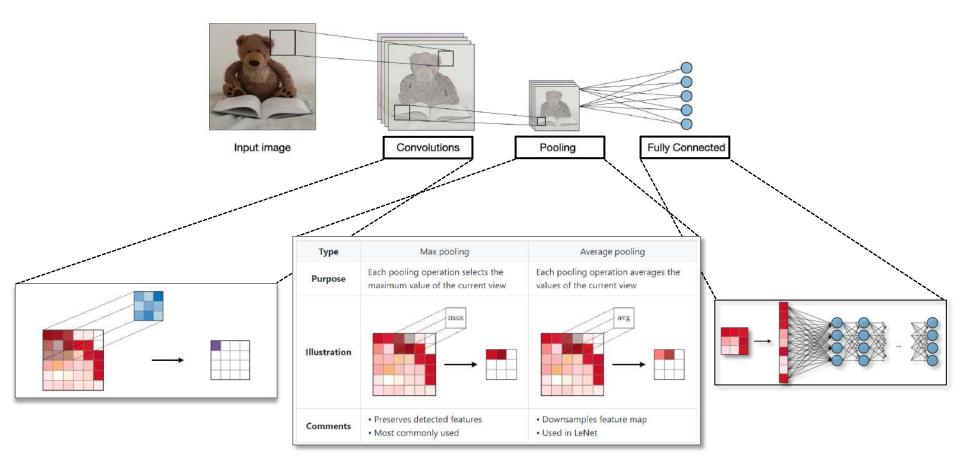
https://www.nature.com/articles/s41416-021-01387-w



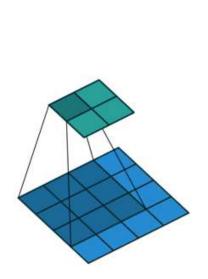
Imaging features

https://www.nature.com/articles/s41591-018-0316-z

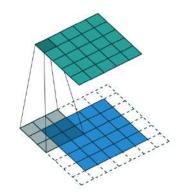
Layers in a convolutional neural network



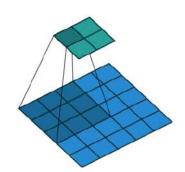
Hyperparameters inside the convolutional layer



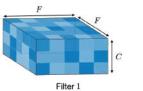
- 3x3 conv kernel
- Valid (no) padding
- Stride = 1

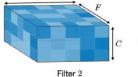


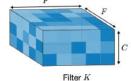
- 3x3 conv kernel
- Same padding
- Stride = 1



- 3x3 conv kernel
- Same padding
- Stride = 2

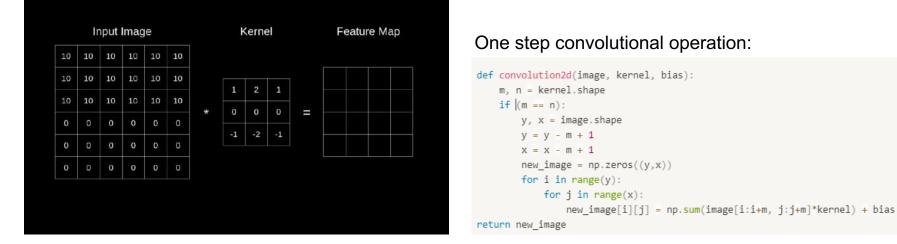






CONV F $\times K$ Illustration F $\otimes C$ $I \times I \times C$ Input size $O \times O \times K$ **Output size** Number of $(F \times F \times C + 1) \cdot K$ parameters • One bias parameter per filter ullet In most cases, S < FRemarks • A common choice for K is 2C

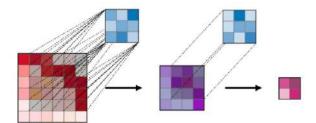
Convolutional layers



Receptive field:

$$R_k = 1 + \sum_{j=1}^k (F_j - 1) \prod_{i=0}^{j-1} S_i$$

In the example below, we have $F_1 = F_2 = 3$ and $S_1 = S_2 = 1$, which gives $R_2 = 1 + 2 \cdot 1 + 2 \cdot 1 = 5$.



Famous CNN model designs: residual connection

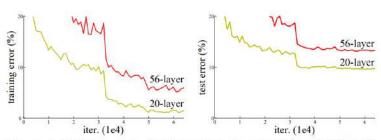
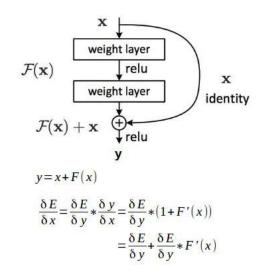
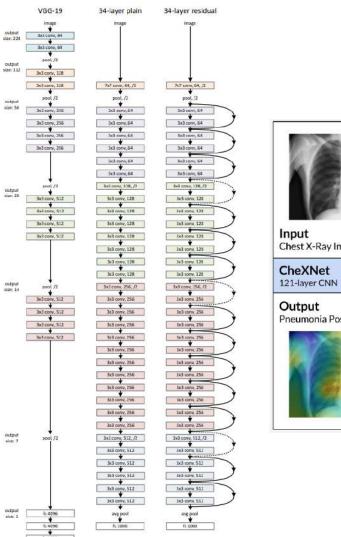


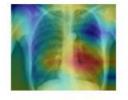
Figure 1. Training error (left) and test error (right) on CIFAR-10 with 20-layer and 56-layer "plain" networks. The deeper network has higher training error, and thus test error. Similar phenomena on ImageNet is presented in Fig. 4.





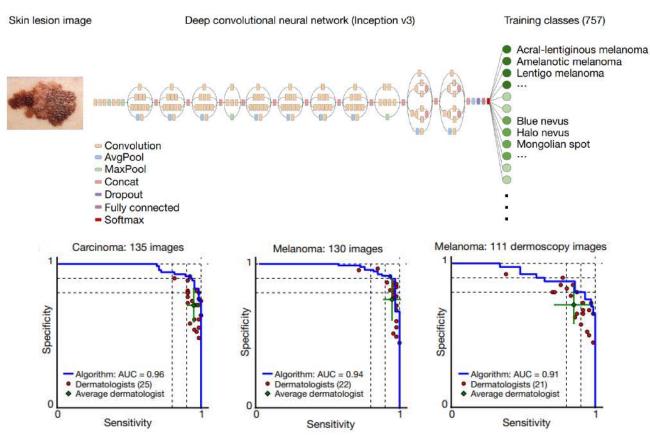
Chest X-Ray Image

Pneumonia Positive (85%)



Dermatologist-level classification of skin cancer with deep neural networks

Andre Esteva¹*, Brett Kuprel¹*, Roberto A. Novoa^{2,3}, Justin Ko², Susan M. Swetter^{2,4}, Helen M. Blau⁵ & Sebastian Thrun⁶

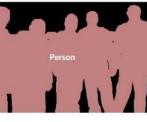


Medical Data Science Lecture 26.11.2022

Beyond image classification

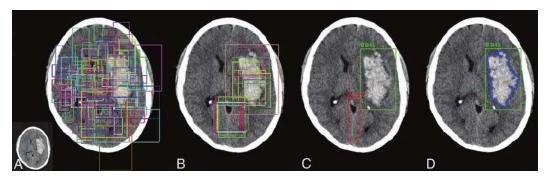
RNTHAACHEN UNIVERSITY

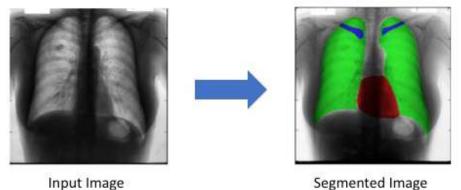
Object Detection



Person 1

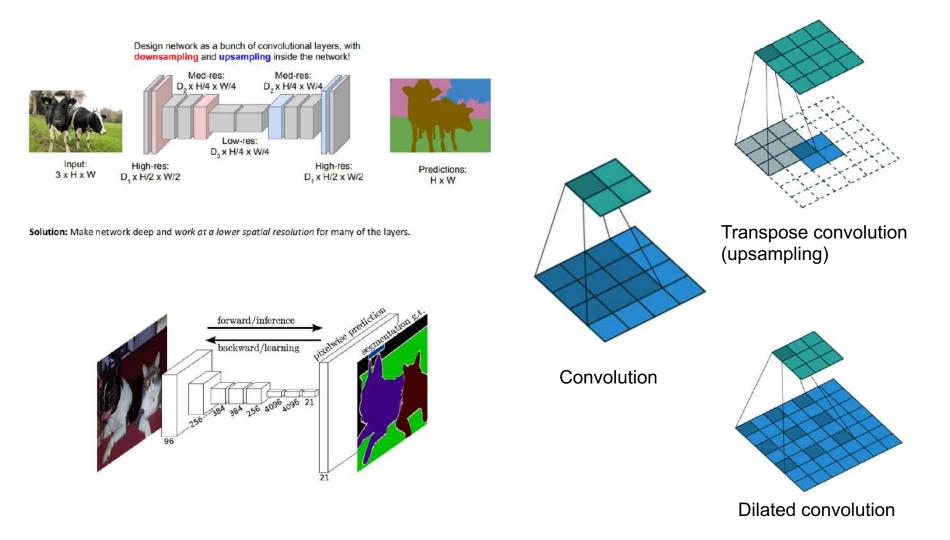
Instance Segmentation



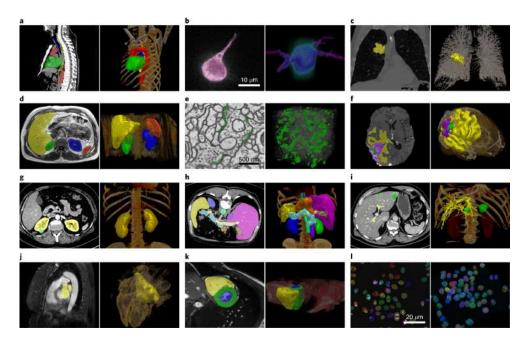


Convolutions in segmentation

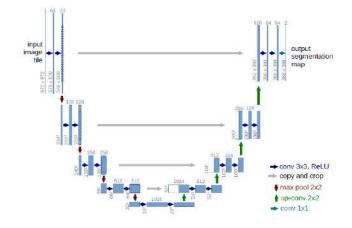
RWTHAACHEN UNIVERSITY



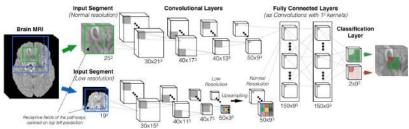
Beyond classification: medical segmentation



https://www.nature.com/articles/s41592-020-01008-z



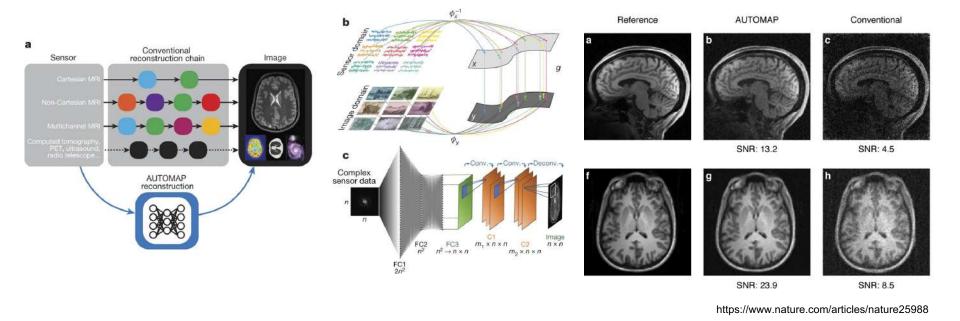
https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/

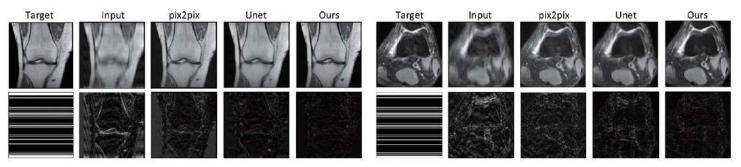


https://www.sciencedirect.com/science/article/pii/S1361841516301839

Medical image reconstruction

RWTHAACHEN UNIVERSITY





https://openaccess.thecvf.com/content_CVPR_2019/papers/Zhang_Reducing_Uncertainty_in_U ndersampled_MRI_Reconstruction_With_Active_Acquisition_CVPR_2019_paper.pdf

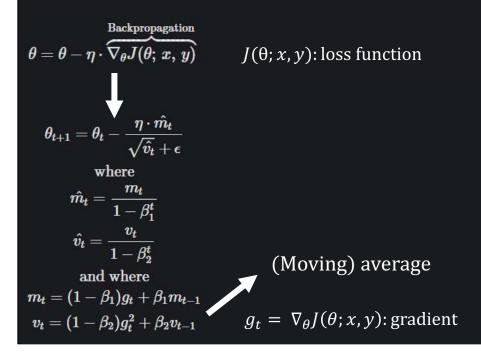
Data driven, ennn..., where is our data?

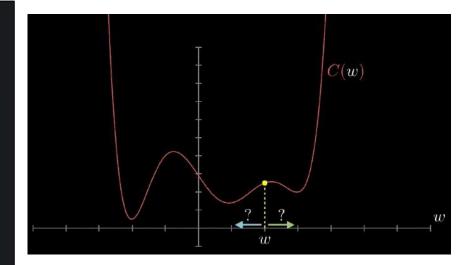
- Disease Classification
 - CheXpert, ChestXray-14, MIMIC-CXR
 - Osteoarthritis Initiative
 - Diabetic Retinopathy Detection (Kaggle)
 - **Tissue segmentation**
 - Multimodal Brain Tumour Segmentation Challenge (BraTS)
 - Medical Segmentation Decathlon
 - EchoNet Dynamic
 - Disease detection:
 - National Lung Screening Trial (NLST)
 - Lung Image Database Consortium image collection (LIDC-IDRI)

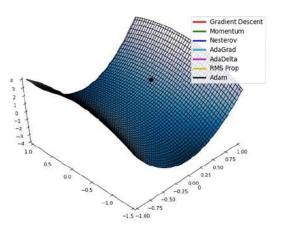
Thank you for listening! Questions?

Optimization by Adam optimizer

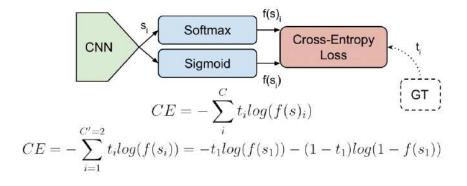
RWITHAACHEN UNIVERSITY



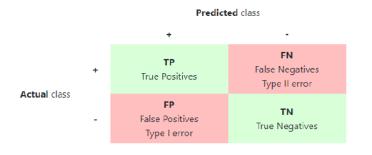


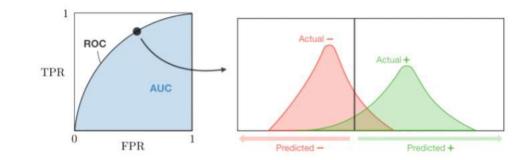


Classification loss function and evaluation

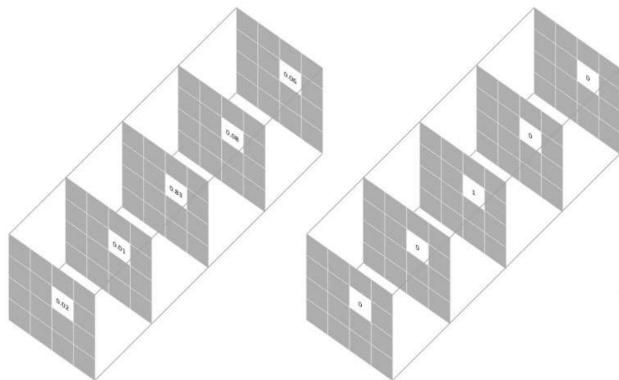


Metric	Formula	Equivalent
True Positive Rate TPR	$\frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FN}}$	Recall, sensitivity
False Positive Rate FPR	$\frac{\mathrm{FP}}{\mathrm{TN}+\mathrm{FP}}$	1-specificity





Cross entropy loss functions in segmentation



Prediction for a selected pixel

Target for the corresponding pixel

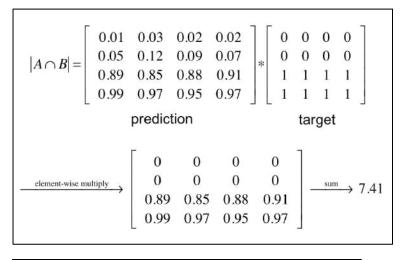
Pixel-wise loss is calculated as the log loss, summed over all possible classes

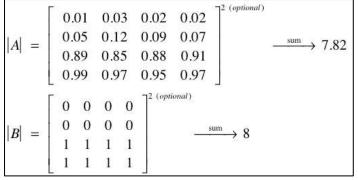
 $-\sum_{classes} y_{true} \log (y_{pred})$

This scoring is repeated over all **pixels** and averaged

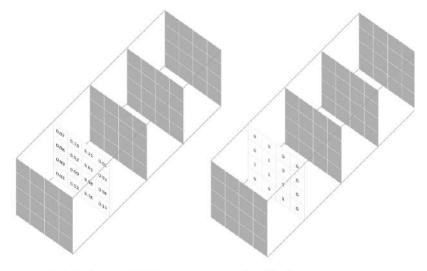
Dice loss in segmentation

$$Dice = \frac{2 |A \cap B|}{|A| + |B|}$$





Medical Data Science Lecture 26.11.2022



Prediction for a selected class

Target for the corresponding class