

MRI practical course 2

Tianyu Han

Physics of Molecular Imaging Systems (PMI) Experimental Molecular Imaging (ExMI) RWTH Aachen University

Question from last week

Refocusing signals

180° pulse can refocus M_{xy} , because B_0 -inhomogeneities are time-independent

Spin Echo used e.g. in SE, TSE, RARE (Bruker)

Institute for Experimental Molecular Imaging MRI Practical Course 2, 14.06.2022

T2 sequence: spin echo

McRobbie, Donald W., et al. MRI from Picture to Proton. Cambridge university press, 2017.

http://physiology-physics.blogspot.de/2010/06/understanding-basic-principles-of.html

■ Flip magnetization into xy-plane, alternating magnetic field → nuclear magnetic resonance (NMR) signal

- $\omega_0 = \gamma B_0 \longrightarrow \mathsf{RF} \text{ field}$
- γ: gyromagnetic ratio

Institute for Experimental Molecular Imaging MRI Practical Course 2, 14.06.2022

Buxton: Introduction to fMRI. Cambridge University Press, 2009

B1 field properties

- B1 field properties: center frequency and bandwidth
- Used to excite the magnetization = flip of the magnetization vector

 $\omega = -\nu B$

Institute for Experimental Molecular Imaging MRI Practical Course 2, 14.06.2022 Excitation of the magnetization: Nuclear magnetic resonance

B1 field with center frequency ω and bandwidth $\Delta \omega$ exites magnetization with field strength B $\pm \Delta B/2$

Modify the static magnetic field B₀ with a linear gradient field, for example a X-gradient

RNNTHAACH ш Magnetic field **B**0 X position

Modify the static magnetic field B_0 with a linear gradient field, for example a X-gradient

Gradient strength \rightarrow slope of the line => blue > green

Institute for Experimental Molecular Imaging MRI Practical Course 2, 14.06.2022

Slice selection gradient

- Apply B1 field and gradient at the same time
- **Excite slice with** $\omega = \gamma B$

Exercise: Slice excitation

Question

- How can we change the position of the slice?
- How can we change the thickness of the slice?
- How can we change the orientation of the slice?

MRI Practical Course 2, 14.06.2022

Results Exercise: Slice excitation

Institute for Experimental Molecular Imaging MRI Practical Course 2, 14.06.2022

Change slice position \rightarrow change ω_1

16

пп- ААСН

IMVERSI

Change slice thickness \rightarrow change $\Delta \omega$

$$\omega = \gamma B$$
$$\Delta \omega = \gamma \Delta B$$

Change thickness and position → **RWTHA** change gradient strength

$$\omega = \gamma B$$
$$\Delta \omega = \gamma \Delta B$$

Change slice orientation \rightarrow change gradient orientation

- Apply x-, y- and z-gradient → excite slice perpendicular to x-, y- and z-gradient
- Or apply for example x- and y-gradient with different strength:

X

Only X-gradient X- and Y-gradient with same strength X- and Y-gradient with different strength Institute for Experimental Molecular Imaging MRI Practical Course 2, 14.06.2022

Exercise: Slice excitation → calculations

Institute for Experimental Molecular Imaging MRI Practical Course 2, 14.06.2022

Question $\omega = \gamma B$ $\omega = 2\pi f$ $\Delta \omega = \gamma \Delta B$ $\frac{\gamma}{2\pi} = 42.6 \frac{MHz}{T}$

- 1) Calculate the Larmor frequency of hydrogen a 3T.
- 2) We apply a slice selection gradient of 30 mT/m in z direction.
 - 1) How thick is the slice excited by an RF pulse with a bandwidth of 20 kHz at the Larmor frequency?
 - 2) How do we need to change the center frequency of the RF pulse to shift the slice by 10 cm?

Question
$$\omega = \gamma B$$
 $\omega = 2\pi f$ $\Delta \omega = \gamma \Delta B$ $\frac{\gamma}{1} = 42.6 \frac{MHz}{T}$

1) Calculate the Larmor frequency of hydrogen a 3T.

 2π

$$E = \frac{\omega}{2\pi} = \frac{\gamma}{2\pi}B = 42.6 \frac{\text{MHz}}{T} * 3T = 127.8 \text{ MHz}$$

2) We apply a slice selection gradient of 30 mT/m in z direction.

1) How thick is the slice excited by an RF pulse with a bandwidth of 20 kHz at the Larmor frequency?

$$\Delta f = \frac{\gamma}{2\pi} \Delta B \Rightarrow \Delta B = \frac{\Delta f}{\frac{\gamma}{2\pi}}$$
 Thickness $s = \frac{\Delta B}{G} = \frac{\Delta f}{\frac{\gamma}{2\pi}G} = 15.6 mm$

2) How do we need to change the center frequency of the RF pulse to shift the slice by p = 10 cm?

$$\Delta B = p * G \qquad \Delta f = \frac{\gamma}{2\pi} \Delta B = \frac{\gamma}{2\pi} * p * G = 127.8 \ kHz$$

Frequency and Phase Encoding

Institute for Experimental Molecular Imaging MRI Practical Course 2, 14.06.2022

Spatial encoding within 2D slice

- Data is acquired in the k-space:
- k-space: frequency space

$$\vec{k}(t) = \gamma \int \vec{G}(t) dt$$

- Fourier Transform (FT): frequency space → image space
- Inverse FT: image space \rightarrow frequency space
- 2 types of moving in the k-space and acquiring data:
 - Frequency encoding
 - Phase encoding

MRI Practical Course 2, 14.06.2022

Phase encoding gradient

Apply gradient before acquisition

Institute for Experimental Molecular Imaging MRI Practical Course 2, 14.06.2022

Phase encoding

■ Apply gradient before acquisition → change phase of the spins

Acquire 3D image → typical sequence object

- Excite magnetization by simultaneously applying B1 field and slice selection gradient (z-gradient)
 → 2D slice
- Apply a phase encoding gradient (y-gradient)
 → 1D line
- Apply a frequency RF
 encoding gradient during Slic
 acquisition (x-gradient)
 → voxel

Fourier Transform (FT) of k-space data \rightarrow image

- k-space: frequency space
- FT: frequency space \rightarrow image space
- Inverse FT: image space \rightarrow frequency space
- Low frequencies in the center of the k-space
- High frequencies \rightarrow high intensity fluctuation in the image (i.e. edges)

37

linear scale

log scale

INVERSI inner part FT mask **Inverse FT** outer part FT Institute for Experimental Molecular Imaging 38

RNTHAACHEN

STEMS

High and low frequency filter

MRI Practical Course 2, 14.06.2022

Questions?

tianyu.han@pmi.rwth-aachen.de

mriquestions.com

Vielen Dank für Ihre Aufmerksamkeit!

Tianyu Han

RWTH Aachen University Templergraben 55 52056 Aachen

www.rwth-aachen.de

MRI – Practical Course 2

Task 1: Slice selection

- How can we change the position of the slice?
- How can we change the thickness of the slice?
- How can we change the orientation of the slice?

Task 2: Calculations

$\omega = \gamma B$	$\omega = 2\pi f$
$\Delta \omega = \gamma \Delta B$	$\frac{\gamma}{2\pi}$ = 42.6 $\frac{\text{MHz}}{T}$

- 1. Calculate the Larmor frequency of hydrogen a 3T.
- 2. We apply a slice selection gradient of 30 mT/m in z direction.

- How thick is the slice excited by an RF pulse with a bandwidth of 20 kHz at the Larmor frequency?

- How do we need to change the center frequency of the RF pulse to shift the slice by 10 cm?

