

MRI practical course 1

Tianyu Han

Physics of Molecular Imaging Systems (PMI) Experimental Molecular Imaging (ExMI) RWTH Aachen University

tianyu.han@pmi.rwth-aachen.de

Introduction

Medical imaging

Medical imaging: basic concepts

Medical imaging: technology advances

3 different magnetic fields, today B_0 , B_1 , (but no G)

MR imaging

- Magnetic resonance imaging
 has revolutionized medicine
- Directly visualizes soft tissues in 3D
- Wide range of contrast mechanisms
 - Tissue character (solid, soft, liquid, fat, ...)
 - Diffusion

- Temperature
- Flow, velocity
- Oxygen Saturation

MRI: how does it work

- Magnetic Polarization ~ B₀
- -- Very strong uniform magnet
- Excitation ~ B₁
- -- Very powerful RF transmitter
- Acquisition ~ G

- -- Location is encoded by gradient magnetic fields
- -- Very powerful audio amps

The B_0 and B_1 field

Institute for Experimental Molecular Imaging MRI Practical Course 1, 24.05.2022

Why do we need the B0-field?

Polarization

- Protons have a magnetic moment
- Protons have spins
- Like "tiny" rotating magnets
- Body has a lot of protons
- In a strong magnetic field B0, spins align with B0 giving a net magnetization

Why do we need the B0-field?

Nuclear magnetic moments

http://physiology-physics.blogspot.de/2010/06/understanding-basic-principles-of.html

B0-field scale

Very strong constant magnet field

Field strength / T	Example		
0.00005	Earth's magentic field in Germany		
0.1	Typical horseshoe magnet		
1.6	Strongest permanent magnet		
3	Typical clinical MRI		
9.4	Strongest clinical MRI		
23.5	Strongest MRI (NMR)		

B0-field generation

Generation with superconducting coils

- Superconducting material: very low temperature
 - (~ -269 °C) \rightarrow electrical resistivity is 0
- Very high currents possible → very high magnetic fields
 Low temperatures → liquid helium (pump)

Institute for Experimental N MRI Practical Course 1, 24.

Why do we need the B1-field???

■ Flip magnetization into xy-plane, alternating magnetic field → NMR signal

Buxton: Introduction to fMRI. Cambridge University Press, 2009

Deviated from the classical picture

Institute for Experimental Molecular Imaging MRI Practical Course 1, 24.05.2022

Measuring with dedicated coils

NMR signal

RWTHAACHEN UNIVERSITY

- Signal from ¹H (mostly water)
- Magnetic field \Rightarrow Magnetization
- Radio frequency \Rightarrow Excitation
- Frequency

 Magnetic field

Refresh your mind

The direction of the main magnetic field (Bo) in a cylindrical closed bore scanner is

- a. O Longitudinal (along the main axis) of the cylinder
- b. O Horizontal (cross-wise to the cylinder and parallel to the floor)
- c. O Vertical (cross-wise to the cylinder and perpendicular to the floor)
- d. O Can be at any angle depending on which gradients are turned on

Which coils are located closest to the patient in an MR scanner?

- a. O Gradient coils.
- b. O RF-receiver coils.
- c. O Shim coils.

19

d. O Body RF-transmit coils.

Refresh your mind

A 1.5 T MR scanner has a base operating frequency of approximately 64 MHz. In the electromagnetic spectrum, this is considered to be in the range of

- a. O Infrared frequencies.
- b. O Radio frequencies.
- c. O X-ray frequencies.

20

d. O Microwave frequencies.

Relaxations

Institute for Experimental Molecular Imaging MRI Practical Course 1, 24.05.2022

Relaxing back to equilibrium (spin-lattice-relaxation, T1)

After a flip, M relaxes back to equilibrium

•
$$M_z(t) = M_0 \cdot \left(1 - \exp\left(-\frac{t}{T_1}\right)\right) + M_z(0) \cdot \exp\left(-\frac{t}{T_1}\right)$$

Siemens Medical: Magnets, Spins, and Resonances (2003)

More relaxation: Spin-spin relaxation (T2)

- Spins lose phase-coherence
- Effect of the material of the sample itself

What's the T2* relaxation?

Effect of B_0 -inhomogeneities: $B(\vec{r}) = B_0 + \Delta B_0(\vec{r})$

- $\omega_0(\vec{r})$ is spatially dependent
- In a voxel: some magnetization vectors rotate faster than others
- Additional decay of M_{xy} : $\frac{1}{T_2^*} = \frac{1}{T_2} + \gamma \cdot \Delta B_0$

Refocusing signals

180° pulse can refocus M_{xy} , because B_0 -inhomogeneities are time-independent

Spin Echo used e.g. in SE, TSE, RARE (Bruker)

Institute for Experimental Molecular Imaging MRI Practical Course 1, 24.05.2022

Institute for Experimental Molecular Imaging MRI Practical Course 1, 24.05.2022

Summary: most important

- In equilibrium: M is in z-direction
- RF-pulses: Flip the magnetization
- Measured signal is $M_{xy}!$
- There is relaxation... Two mechanisms

Exercise 1: Basic sequences

Institute for Experimental Molecular Imaging MRI Practical Course 1, 24.05.2022

Basic sequence objects

- RF pulses (90°, 180°)
- Acquisition timepoints
- Time delays

TASK: Develop 3 sequences to measure T_1 , T_2 , T_2^* in groups, sketch signals

T2* sequence

T1 sequence

Exercise 2: T1, T2, T2* determination

$$M_{z}(t) = M_{0} \cdot \left(1 - 2 \cdot \exp\left(-\frac{t}{T_{1}}\right)\right)$$
$$M_{xy}(t) = M_{0} \cdot \exp\left(-\frac{t}{T_{2}^{*}}\right)$$
$$M_{xy}(t) = M_{0} \cdot \exp\left(-\frac{t}{T_{2}}\right)$$

Values:

<u>t [ms]</u>	M(t)	In(M)	<u>t [ms]</u>	<u>M(t)</u>	<u>In(M)</u>	<u>t [ms]</u>	<u>M(t)</u>
10	266	5,58	10	182	5,20	10	-277
30	210	5,35	20	110	4,70	50	-195
50	165	5,11	30	67	4,20	100	-108
100	91	4,51	40	41	3,71	150	-37
150	50	3,91	50	25	3,22	200	22
200	28	3,33	60	15	2,71	250	71
						300	111

Solution

$$M_{xy}(t) = M_0 \cdot \exp\left(-\frac{t}{T_2^*}\right)$$
$$\implies \ln(M_{xy}(t)) = \ln(M_0 \cdot \exp\left(-\frac{t}{T_2^*}\right))$$
$$\implies \ln(M_{xy}(t)) = \ln(M_0) - \frac{t}{T_2^*}$$

PHYSICS OF MOLECULAR IMAGING SYSTEMS

Solution

$$M_z(t) = M_0 \cdot \left(1 - 2 \cdot \exp\left(-\frac{t}{T_1}\right)\right)$$

$$\Rightarrow T_1 = -\frac{t}{\ln(1/2)}$$

 $T_1 = 250 ms$

36

Tissue	T1 (msec)	T2 (msec)
Water/CSF	4000	2000
Gray matter	900	90
Muscle	900	50
Liver	500	40
Fat	250	70
Tendon	400	5
Proteins	250	0.1-1.0
Ice	5000	0.001

Vielen Dank für Ihre Aufmerksamkeit!

Tianyu Han

RWTH Aachen University Templergraben 55 52056 Aachen

www.rwth-aachen.de

MRI – Practical Course 1

Task 1:

Task 1: Basic sequence objects

You dispose of an MRI scanner and you have an unknown tissue sample. You would like to measure its different relaxation times (T1, T2, T2*) to get an idea about the material properties. This means, you need to measure the corresponding signal decay and recovery curves. You have the following "building blocks" to compose the three MRI sequences:

- RF pulses (90°, 180°)
- Acquisition timepoints
- Time delays

1. Please start with building the T2* sequence.

2. Next one: T2 sequence. Hint: you need to get rid of the B0-inhomogeneities.

3. Please build the sequence for the quantitative T1 measurement.

Task 2:

A T1, T2 and T2* decay were measured. Below you find the corresponding formulas and signal intensities.

- (1) Determine which table of values belongs to which formula.
- (2) Determine T1, T2 and T2* of the measured material.
- (3) Which kind of tissue/material may have been investigated?
- (4) Why is T2* always shorter than T2?
- Formulas: $M_z(t) = M_0 \cdot \left(1 2 \cdot \exp\left(-\frac{t}{T_1}\right)\right)$ $M_{xy}(t) = M_0 \cdot \exp\left(-\frac{t}{T_2^*}\right)$ $M_{xy}(t) = M_0 \cdot \exp\left(-\frac{t}{T_2}\right)$

Values:

t [ms]	M(t)	ln(M)	<u>t [ms]</u>	M(t)	In(M)	<u>t [ms]</u>	M(t)
10	266	5,58	10	182	5,20	10	-277
30	210	5,35	20	110	4,70	50	-195
50	165	5,11	30	67	4,20	100	-108
100	91	4,51	40	41	3,71	150	-37
150	50	3,91	50	25	3,22	200	22
200	28	3,33	60	15	2,71	250	71
		5.57 <i>0</i>				300	111

Questions?

tianyu.han@pmi.rwth-aachen.de

fabian.theissen@pmi.rwth-aachen.de